
N94-2 679
VECTORIZATION AND PARALLELIZATION OF THE FINITE STRIP

METHOD FOR DYNAMIC MINDLIN PLATE PROBLEMS *

Hsin-Chu Chen

Center for Advanced Computer Studies

University of Southwestern Louisiana

Lafayette, LA

Ai-Fang He

Department of Mathematics

Illinois State University

Bloomington, IL

SUMMARY

The finite strip method is a semi-analytical finite element process which allows for a discrete

analysis of certain types of physical problems by discretizing the domain of the problem into finite

strips. This method decomposes a single large problem into m smaller independent subproblems

when m harmonic functions are employed, thus yielding natural parallelism at a very high level.

In this paper we address vectorization and parallelization strategies for the dynamic analysis of

simply-supported Mindlin plate bending problems and show how to prevent potential conflicts in

memory access during the assemblage process. The vector and parallel implementations of this

method and the performance results of a test problem under scalar, vector, and vector-concurrent

execution modes on the Alliant FX/80 are also presented.

INTRODUCTION

More and more parallel computers have been developed and made available to the engineering

and scientific computing community in recent years. To take advantage of current and future

advanced multiprocessors, however, a great deal of efforts remain to be made in the search for efFi-

cient and parallel implementations. In this paper we address both the coarse-grain and fine-grain

parallelism offered by the finite strip method (FSM) for the dynamic analysis of Mindlin plate

bending problems and present our vector and parallel implementations on multiprocessors with

vector processing capabilities. FSM, first developed in the context of thin plate bending analysis,

is a semi-analytical finite element process [6, 22]. This method allows for a discrete analysis of

*This work was supported by the U.S. Department of Energy under Grant No. DOE DE-FG02-85ER25001
while the authors were with the Center for Supercomputing Research and Development, University of Illinois at

Urbana-Champaign.

PItI-CEt_NG PAGE BLA_K NOT FILMED

x 0u, rn u
Z

/ ¢
Ox, rnx w, p

Figure 1: The coordinate system and sign convention.

certain types of physical problems by discretizing their domains into finite strips, involving an ap-

proximation of the true solution using a continuous harmonic series in one direction and piecewise

interpolation polynomials in the others. Because of the orthogonallty properties of the harmonic

functions in the stiffness and mass matrix formulation, FSM decomposes a problem, when appli-

cable, into many smaller and independent subproblems which yields coarse-grain parallelism in an

extremely easy and natural way.

Although not as versatile as the finite element method, FSM has been applied to a wide range

of plate, folded plate, shell, and bridge deck problems [4, 6, 7, 8, 10, 18] because of its efficiency

and simplicity. The performance induced by the coarse-grain parallelism of this method in a

multiprocessing environment has been shown in [9] for the static analysis of Mindiin plate problems

and in [20] for groundwater modeling. In this paper, we report and compare the performance

results of our implementation for the dynamic analysis of a simply-supported rectangular Mindlin

plate using scalar, vector, and vector-concurrent execution modes on an Alliant FX/80.

THE PROBLEM

In this section we describe briefly the mathematical modeling of Mindlin plate problems [17].
Let 9t be the space domain in _2, F the boundary, and T the time domain. Let also the stress

resultants, generalized strains, displacements, dynamic surface loadings, and inertia forces be

denoted respectively by s, r, d, p, and q:

S

My
r ----

_x

7_

"/xy

7_z

")'yz

[w][p] l, d= 0x , p= rn_ , and q= _ph30"_

Oy Yl'ly 1 3 "_ph 0 u

where p stands for the mass density (per unit volume), h the thickness of the plate, and/i (v =

w, 0x, or 0u) the second derivative of v with respect to time t: /i = 02v/Ot 2. The subscripts x, y,

and z above represent the dirgcti()ns in the Cartesian Coor d-inate system. The sign convention for

the displacements and external loadings is shown in Figure 1. Neglecting the damping effect of

the plate, the differential equations which govern the state of stress resultants, generalized strains,

and displacements in an elastic plate can be expressed as

78

1. Equilibrium equations: LTs + p + q = 0 in _ ® T, subject to some appropriate

boundary conditions on F,

2. Stress-strain equations: s = Dr, and

3. Strain-displacement equations: r = L2d.

Here D is the material property matrix of an elastic plate. L1 and L2 are the differential operators:

iO o o OlOz O/Oy
L_ = O x 0 O/Oy -1 0

O/Oy O/Ox 0 -1

(1)

and

[O 0 0 0/Ox O/Oy]
L T = -O/Ox 0 -O/Oy -1 0

0 -O/Oy -O/Ox 0 -1

where the superscript T denotes the transpose of a matrix.

(2)

For orthotropic material, the matrix D takes the form

D Dxy

oLax

c,G_

(3)

where D_, D1, ..., G v are the standard flexural and shear rigidities of plates and a is a modification

coefficient to account for the deviation of shear strain distribution from uniformity [4] (a = 5/6 for

rectangular cross section; see [21, p. 371]). The rest of the entries in D are zero. If the material

is isotropic, then the nonzero entries take the following values:

Eh3 Da = uDx, D_:u _ 1 - U D, ' and Gx = G u - Eh
Dx = D v - 12(1- v2) ' 2 2(1 + u)

where E, h, and u represent the material modulus, plate thickness, and Poisson's ratio, respec-

tively. The total potential energy of the plate due to the dynamic surface loading p [17, 16, 14]

can be written as

t 1 df_) dtH = fo (1 fn(L2d)TD(L2d)dfl- fa pTd df_- _ fn _ITA(t (4)

where a = Od/Ot and A = diag [-ph, lph3, _ph3], a diagonal matrix.

A STRIP ELEMENT FOR MINDLIN PLATES

We now outline the FSM formulation for the Mindlin plates using linear elements [4, 19].

We shall confine our discussions to rectangular Mindlin plate problems simply supported on two

79

I LX

J[y

I
i

12 3 i j

i
!

I

L
!

I

I
I

Y

Figure 2: A discretized plate.

opposite sides. Figure 2 shows a rectangular plate discretized into n - 1 finite strips. The plate is

assumed to be simply supported on edges y = 0 and y = L u. Shown in Figure 3 is the mid-plane

of a typical linear strip plate element of constant thickness h, whose local coordinate system is

denoted by (x', y', z') where x' = x - xi, y' = y, and z' = z. Let _(,) be the domain of the e th

strip element and i and j be the two longitudinal edges (nodal lines) of the element, as shown in

Figure 3. Let d(_)(x,y,t) and u_)(t) be defined as

d(_)(x,y,t) = [w(x,y,t) O_(x,y,t) Ou(x,y,t)] T, (x,y) e n(,)

and

[']
where wl(t) denotes the l 'h harmonic coefficient (amplitude) of w_(y,t) which is the displacement

along edge i, etc. For a linear strip element with m harmonic terms specified, the approximation

to d(e) is given [4, 18] by
m

d(_)(x,y,t) ,_ _F'(x,y)u_,)(t) (5)
l=l

with

O O NjS, o 0]F t = NiSl 0 0 NjSt 0

0 0 g_ct 0 0 NjCt

where St and Ct are the Ith harmonic functions of y, and Ni and Nj are the linear shape functions

of x, defined by
bry lrcy

S, = sin--L-_u , Ct = cos--_,

Ni- l-r(0 ' and Nj= l+r(,)
2 2

8O

2

i = • " :: :

I a I

z/f/

Figure 3: A typical plate strip element.

_X t

where r(_), ranging from -1 to 1, is the natural coordinate in x-direction of the e_h element.

Note that r(_) = -1 + 2 _--=_ for the element shown in Figure 3. It should be observed that the
x i --xi

approximation to the displacement vector in (5) satisfies the simply supported boundary conditions

on edges y = 0 and y = Lu; i.e., w, 0_, OW/OX, O0,:/Ox, and OOu/Oy all vanish on these two edges.

The dynamic surface loading on the e th element, p(_)(x, y, t), can often be approximated by the

sum of a harmonic series in the longitudinal direction as shown below

m

p(,)(x,y,t) _ ___ Ht(y)p{_)(x,t) (6)
l=l

l ' mtu] T The subscript (e)outside the bracketswhere Ht= diag [St, St, Ct] and p(_) = [qt rn:_ (_).

indicates that every component of the vector is associated only with the e th element.

Following the standard finite element procedure and taking advantage of the orthogonality

properties of the harmonic functions, we obtain a linear algebraic differential system of block

diagonal form [5] depicted by:

M/i + Ku = f (7)

where

M = M 11 (_DM 22 ® .." @ M mm and K = K u @ K a2 E) "" @ Km''

are block diagonal matrices of the same block structure. The vectors u and f are accordingly

partitioned,

uT= [(ul) T (u2) T ... (Urn) T] and fT= [(f,)T (f2)T ... (fro)T].

In (7), the symbol G stands for the direct sum of square matrices. M it, K u, u t, and fl are the

system mass matrix, system stiffness matrix, system displacement amplitude vector, and system

load amplitude vector due to the l th harmonic mode, respectively. In the rest of the paper, we

81

shall drop the term amplitude and simply call u t (ft) the lth system displacement (load) vector

for brevity. M tt is assembled from the strip mass matrix Mlte), Ktt from the strip stiffness matrix

K tl and ft from the strip load vector f[e) where(e),

= ff_ (Ft) TAFldl2(e), l= 1, m, (8)M_ le) (_)

K<e)'t = /_(_)(L:Ft)TD(L2Ft)dn(_), l= 1, m, (9)

=/l_ (Ft)THIp(_)d_(_)' l= 1, m. (10)f_) (c)

For a plate discretized with n nodal lines, K It and M u are square matrices of order 3n for each I.

(K(l_) and MII,) are of order 6.) Once the entire system stiffness matrix K, system mass matrix
M, and system load vector f are assembled and the boundary conditions imposed, the remaining

major work is to solve the linear algebraic differential system (7) for u, fi, and ii.

PARALLEL AND VECTOR IMPLEMENTATIONS

Computational Procedure. Similar to the finite element method, FSM normally consists of

the following three main computational components: (1) the generation of strip stiffness/mass

matrices and strip load vectors for all strip elements, (2) the assemblage of the entire system

stiffness/mass matrix and system load vector, and (3) the solution process of the resulting linear

differential system Mii + Ku = f. There are many step-by-step integration methods available

for solving the 2nd-order linear differential equations. Among them are the central difference,

Houbolt, Wilson 0, and Newmark fl methods. The central difference method is an explicit scheme

and the other three are implicit. Regardless of whether the method employed is implicit or explicit,

the procedure basically involves an initial calculation of an effective cocmcient matrix and then

solves an effective linear system, after an effective load vector is formed, at each time step. In this

paper, we employ the Newmark integration method whose procedure is shown below, where a0,

al, ." ", a7 are the Newmark integration constants [3, pp. 311]:

(1) initial calculation of the effective stiffness matrix I_ = K + aoM, the factorization

of I_ into LL T or LDL T form, and then for each time step tk+l, k = 0, 1, .-.

(2) forming the effective load vector t" at time tk+l: fk+l = fk+l+M(a0uk+a2fik+a3fik),
.... ^ II

(3) solvmg the effective hnear system at time tk+l: K Uk+l = k+l,

(4) calculating the acceleration and velocity vectors iik+l and dk+l:

iik+l = ao(Uk+l -- Uk) -- a2dk -- a3iik, lik+l = Ok + a6iik + ariik+l.

Note that the first step need be performed only once. The last three steps, however, must be

performed at every time step and therefore constitute the most time-consuming part in the entire

analysis.

82

To address the parallel implementation of FSM, we should first employ the decoupled structure

of the system stiffness matrix depicted by (7), due to the orthogonality properties of harmonic

functions. This decoupling leads to m independent sets of differential equations. Therefore, solving

(7) is equivalent to solving

Mltfit + Kllul = ft, I = 1, m

where K u and M u, l = 1,..., m, are block tridiagonal matrices with each block of order only

3 × 3 for the ordering shown in Figure 2. Furthermore, each M u consists of only three nonzero

diagonals. Since there is no data dependency among these m subsystems, not only can the

generation of Mlt_) , K tt(_),and f[_) and the assemblage of M u, K u, and ft for each harmonic term be

performed independently, but all the subsystems can be solved in parallel. In a parallel computing

environment with parallelism of two levels (considering vectorization as the first level), this special

feature leads FSM to a fully parallelizable approach when the number of harmonic terms matches

the number of processors. The following pseudo-Fortran code outlines its computational procedure

and indicates where parallelism can be exploited for vector/concurrent executions.

C -- Initial calculations

DO 2001=1, m

DO 100c=1, N,
Generate tt tt t

K(_), .M(_), and fi_)
Assemble K a, M u, and ft

END 100

Initialize u l, d t, and fit

Form I?Ct from K u and M u

Factorize I(n into LL T or LDL T form

END 200

C -- Calculations for each time step

DO until the last time step

DO 4001=1, m

DO 300e=1, Ns

Generate f/r) and assemble ft
END 300

Form effective load vector _t

Solve I£Uu t = _-t for u t

Calculate fit and fit

END 40O

DO 6001= 1, m

Accumulate displacements w for all strips
END 600

END DO

(concurrent, one CPU per iteration)

(to be discussed)

(vector)

(vector)

(vector)

(sequential)

(concurrent, one CPU per iteration)

(to be discussed)

(vector)

(vector)

(vector)

(sequential)

(vector-concurrent)

In the above pseudo-code, we neglect the step of imposing boundary conditions because they

can be performed in the generation step. The word concurrent inside the parentheses after the DO

83

statementsis usedto showthat all iterations in this loop maybeperformedin parallel, on the basis
of oneprocessorper iteration ; and the word vector (or vector-concurrent) indicates computations

involved in the statement should be performed in vector (or vector-concurrent) mode whenever

possible and desirable. Whether a vector operation is desirable depends on the startup overhead

and the vector length of the operation.

Data Structure and Parallelization. To allow current code restructurers to automatically vec-

torize or parallelize certain computations, the Fortran statements related to that part of compu-

tations are usually written in the form of DO loops or array constructs. Potential memory access

conflict must also be resolved. Therefore, the data structure of the code plays an essential role. In

our implementations, the system stiffness matrix K and system mass matrix M are represented

by two 3D arrays SK(l:nbk,l:n,l:m) and SM(l:nbm,l:n,l:m), respectively, where nbk (nbrn) is the

semi-bandwidth of K (M), n the number of equations in each harmonic term, and m the number

of harmonic terms. It should be noted that in many situations, it is mo_e beneficial to interchange

the first two dimensions of both K and M, or to concatenate the first two dimensions into a single

dimension. The system load vector f is represented by a 2D array SF(l:n,l:m) and the vectors u,

fl, and fi are similarly represented by 2D arrays SU, SV, and SA, respectively. This representation

allows parallelization across harmonic terms to be performed in the outermost loop. It also makes

the passing of references to subroutines an easy task.

To serve as an example, we consider the DO 200 loop where the computations inside the loop

are now translated into subroutines as shown below (the DO 400 loop follows the same approach).

CVD$L CNCALL ! an Alliant directive

DO 200 L = l, m ! concurrent, one CPU per iteration

CALL GenAss (SK(1,1,L), SM(1,1,L), SF(1,L), L, n, nbk, nbm, ns, ...)

CALL Initialize (SU(1,L), SV(1,L), SA(1,L), ...) ! Initialize u0, rio, and rio.

CALL Form (SK(1,1,L), SM(1,1,L), n, nbk, nbm, a0) ! Form I_ u and overwrite SK.

CALL Factorize (SK(1,1,L), n, nbk) ! Factorize I£ u and overwrite SK.

END 200

where GenAss is a subroutine performing the task of the DO 100 loop in the previous pseudo code.

The other three subroutines are self-explanatory. In the above code, the argument ns denotes the

number of strips Ns and aO is the Newmark constant a0. Using this approach, each processor will

have an identical local copy, automatically generated by the compiler, of the subroutines inside the

loop and its own reference space (via the index L) in locating K u, M u, and fl; yielding concurrent

execution for all harmonic terms because distinct processors will hold different values of L. This

not only prevents memory access conflicts in performing these tasks but also enables us to use a

single set of subroutines for all harmonic terms. The same applies to the other three subroutines as
well. Note that the index L is also passed to the subroutine GenAss as a local variable because it

is required for evaluating K[l_), Mlte), and f/C) whose dimensions should be declared inside GenAss
and will become local variables.

84

Vectorization. To address vectorization, we now turn to the computations for a single har-
monic term. First we note that the formation of the effective stiffness matrix I£ u and effective

load vector _t, and the calculation of/i t and fit consist mainly of matrix-matrix (vector-vector)

additions and matrix-vector multiplications and are thus highly vectorizable. The vectorization

and parallelization of factorizing I£ II and solving the linear system I_Uu I = _-t have been under

intensive studies; see [13, 15, 23] for example. In this paper, we shall only focus on approaches to

U (fl_)) and" and the assemblage of K u. The generation of M(_)vectorizing the generation of K(_)

the assemblage of M u (ft) follow the same way and, thus, need not be discussed.

u The first, referred to asThere are two approaches to vectorizing the generation of K(_).

Vectorization within a Single Strip (VSS), is to generate the entries of Klt_) in vector mode. This

" for all strips can share the same storage ofapproach requires a minimal storage because K(_)
a single strip stiffness matrix, which is usually the case for most traditional finite strip or finite

element programs. The disadvantage is that the vector length available for vectorization is limited

by the order of the strip stiffness matrix, 6 in our case, which is rather small. In addition, the

generation step may not even involve any loop structure because most of the Fortran statements
tt

may simply be assignment statements when the entries of K(_) are explicitly integrated. Therefore,

we resort to the second approach: Vectorization across Multiple Strips (VMS). This approach

generates the matrix entries component-wise across many different strips by employing the fact

that each strip matrix can be generated independently of the others. It, however, requires a

manual change in the data structure of the strip matrix in the computer program because current

code restructurers can hardly accomplish this task automatically. One way of achieving our goal

is to add one more dimension (preferably the first dimension) to the array that stores a strip

matrix so that the new array can store all strip stiffness matrices. For example, let EKL(I:6,1:6)

be the array used in the VSS approach for storing a single strip stiffness matrix and be shared

by all strips, one at a time. (For simplicity, we ignore the symmetry of the matrix.) When the

VMS approach is employed, we can simply change EKL to a 3D array, say EKL(I:ns,I:6,1:6), so

that the first dimension is associated with strip identifications, allowing vector execution to be

performed across strips. Although the change in data structure may impose some programming

difficulty in modifying an existing code, this approach indeed provides a very good way for both

vectorization and parallelization.

So far as the assemblage of the I th system stiffness matrix K u is concerned, both VSS and

VMS are still applicable if potential data dependencies are avoided. Note that assemblying an

u to K u has no conflict with assemblying the other entries of the same matrix to Ktt.entry of K(_)

Vectorization obviously can be performed within any single strip matrix without any diffÉculty,

subject to the same disadvantage of short vector length as the case in the generation step. The

following Fortran code indicates where vectorization can be performed using VSS for assemblying

the stiffness matrix, where the rows of SKL store the upper diagonals of the band symmetric

matrix K u using the Linpack format [12] with the main diagonal of K n stored in the last row of
SKL.

85

DO i00 I = i,NBK

SKL(I, l:N)= 0.0 (vector)

END 100

DO 300 K = I, NS ! NS: No. of strips

KI=3*(K-I)

DO 200J=1,6

Ji = K1 + J

II=NBK-J+ 1

SKL(II:NBK, J1) = SKL(II:NBK, J1) + EKL(I:J, J)

! Vector length too short.

END 2OO

END 300

! NBK (=6): Semi-bandwidth of K u

! Initialization. N: No. of equations of K II

(vector)

Care, however, must be taken when the VMS approach is employed for assembling K u. This is

because different strips may have some nodes in common, which amounts to saying that the entries

of KlZ_) from different strips may contribute themselves to the same location in K u. Therefore, in
II

order to vcctorize the assemblage of K u from K(_) across multiple strip elements, we must find

a way to avoid potential simultaneous updates of a common matrix entry. A general approach

to avoid this situation is to use graph coloring techniques to partition strips so that all strips in

the same group do not contain any common nodes. For our plate problems under consideration,

two colors are enough: one for odd strips and the other for even strips. When a natural ordering

is imposed as shown in Figure 2, however, a better approach to enhancing vectorization can

be employed by assemblying entries component-wise (or node-wise) across all strip elements as

shown below, assuming the i 'h strip starts from nodal line i to nodal line i + 1 and all strip stiffness

matrices are available.

DO 100 I = l, NBK } NBK (=6): Semi-bandwidth of K Iz

SKL(I, I:N) = 0.0 (vector) ! N: No. of equations of K u

END 100

DO 300J=I, 6

JS - 3 * (NS-1) + J ! NS: No. of strips

DO 200I- 1, J

IJ =NBK- J+I

SKL(IJ, J:JS:3) - SKL(IJ, J:JS:3) + EKL(I:NS, I, J) (vector)

END 200

END 300

Note that the array EKL now has one dimension more than the one used in the previous code.

The storage can be reduced _y :Lbout half if symmetry of the matrix is taken into account. Finally,

we would like to mention that for a cluster-based multiprocessor with parallelism of three levels

like the Cedar [11], FSM is a perfect candidate because the decoupling at the system level offers

86

q(t)

q(t) = qo(1-- _), O < t < td

qo

qo = 40 psi
0.05 sec._ t

td

Figure 4: The triangular loading (uniformly distributed on the entire plate).

a great deal of freedom for the problem to be solved using all levels of parallelism. For example,

we need exploit only the first two levels of parallelism in a linear system solver instead of three

because the highest level of parallelism can be employed across multiple linear subsystems.

NUMERICAL EXPERIMENTS

To demonstrate the effectiveness and parallelizability of FSM, we consider the dynamic Mindlin

analysis of a thin steel plate that is simply supported on all of its four edges and is subject to a

uniformly distributed triangular loading q(t) as shown in Figure 4. This plate, adapted from [2],

is 60 inches (Lx) wide, 40 inches (Ly) long, and one inch thick throughout the entire plate. The

material of the plate is assumed to be isotropic with Young's modulus E = 30 x 106 ksi, Poisson

ratio u = 0.25, and a mass density of m = 0.00073 lb-sec2/in 4. The time step size At is set

to 0.00001 sec. In evaluating the strip stiffness matrices, reduced integration with one Gaussian

point is used to overcome the shear locking behavior [18]. The strip mass matrices are evaluated

using the consistent mass approach. The linear algebraic differential equations are solved using

the Newmark integration method with parameters a = 0.25 and 5 = 0.50 [3, pp. 311]. A banded

direct solver is used to solve the resulting linear subsystems in each time step.

In Figure 5, we compare the numerical solution of the displacement w at the center of the plate

using 16 Mindlin strip elements with the exact solution (Fourier series) derived from the Kirchhoff

thin plate theory. Eight harmonic terms are used in the finite strip approximation. From Figure

5, it is clear that the finite strip solution is in good agreement with the exact solution of the

Kirchhoff theory. The performance of this method on an Alliant FX/80 is shown in Tables 2 and

3. In Table 2, we compare the CPU time (all in seconds) consumed in the entire analysis, including

the generation, assemblage, and solution of the linear algebraic differential equations and finally

the calculation of the displacements. Three different execution modes: scalar (S), vector (V), and

vector-concurrent (VC) are considered. The compiler options [1] used for these modes are shown
in Table 1.

Table 2 shows the vector speedup (the ratio of the 1-processor CPU time spent under the

S mode to that under the V mode) for the entire process. As seen from this table, the vector

87

Displacement(inches)

0.80

0.60

0.40 !0.20

0.00

-0.20 1

-0.40

o o o : 16 strip elements

-- : Fourier series

I I

_ I_

(Kirchhoff) [

T- 1
I_ I a o l

---- I _ I I

I I

I I

---- I -- ----I -- --F

I I I

I _ I

I I

I I

T- -- F_

-0.60
0.00 0.02 0.03 0.04 0.05 0.06 0.07 0.08

I

I

I

I

,,,,,**ll*lllll,*lllllllll,,I,,,I,,,,,I,,,,,,,,,I,,,,,_,,,h,l,lllllhlllllll

0.01

Simulation time t (seconds)

Figure 5: Displacement at the center of the plate.

Table 1: Compiler options

Execution mode

Scalar (S)

Compiler options
, rz_

-Og -AS -pg

Subprograms compiled

the entire program

Vector (V) -Ogv 'AS -pg the entire program

Vector-Concurrent -Ogv -AS recursively-called subroutines

(VC) -Ogvc -AS others

I
i

J
i

i

i

T

Table 2: CPU time (in seconds) and vector speedup on the Alliant FX/80 using one processor.

................. Siep Scalar (S) Vector (V) l SIV I Remark

Solve LDLTu = i" 177.1 137.1

Compute f, fi, /i (Newmark) 91.0 25.3
42.7 12.4Generate fie) and assemble f

Initialization and I/0

Total
: : : ::--;: :: :=

1.72

312.4

1.70

176.4

1.29

3.60

3.45

1.01

] 1.77[

semi-bandwidth too small

mainly DAXPY operations.

using the VMS approach

no manual optimization

88

Table 3: Parallel performanceunder the vector-concurrentmode.

No. of processorsk 1 2 4 8

CPU time in seconds 165.7 84.14 45.01 25.08

Concurrency speedup Sk 1.00 1.97 3.68 6.61

Efficiency Ek (%) 100.0 98.5 92.0 82.6

Concurrency speedup

I

I 1 I

- - - : Theoretical speedup _lZ_'"
,tl

--: Observed speedup , ,

I I I 1/I

I

I

1 2

I

I

I

I

3 4 5 6 7 8

Number of processors

Figure 6: Concurrency speedup on the Alliant FX/80.

89

speedupsfor the three most time-consumingparts: (1) solving I_u = f, (2) computing f, fl, and
/i, and (3) generating f/e) and assemblying f are 1.29, 3.60, and 3.45, respectively. Note that

the semi-bandwidth of the system stiffness matrix is only 6 in this example, which is obviously

not long enough for a banded direct linear system solver to take advantage of vector instructions

in solving the linear system. The vector speedups for the other two parts, however, are very

satisfactory. It deserves mentioning that in generating fie) and assemblying f, we employed the

VMS approach which yields a much better vector performance than the VSS approach. Table 3

shows the concurrency speedup Sk, defined to be the ratio of the CPU time spent under the VC

execution mode of the entiri_ _program using only one processor to that using k processors and

the efficiency Ek (= Sk/k), the ratio of the concurrency speedup Sk to the'number of processors

k. Figure 6 plots the speedup against the number of processors used. As seen from Table 3, the

concurrency speedups observed using 2, 4, and 8 processors are 1.97, 3.68, and 6.61, respectively.

This impressive performance clearly indicates the parallelizability of FSM on multiprocessors when

the number of harmonic terms used matches the number of processors available.

CONCLUSIONS

The effectiveness and parallelizability of the finite strip method (FSM) for the dynamic analysis

of a class of Mindlin plates have been addressed and vector/parallel implementations presented.

The performance of this method on the Alliant FX/80 has also been tested using a rectangular

plate that is simply supported on all edges and is subject to a uniformly distributed triangular

loading. From the experiments performed, we have obtained concurrency speedups of 1.97, 3.68,

and 6.61 using 2, 4, and 8 processors, respectively. These speedups are satisfactory and very

encouraging. It clearly demonstrates the superiority of FSM in a parallel processing environment.

For vectorization, good performance has also been observed for the Newmark integration scheme

and for the generation/assemblage process using the VMS (vectorization across multiple strips)

approach. In summary, we conclude that, although vector performance during the solution stage

may be hindered by the small semi-bandwidth of the subsystems if a direct solver is employed, FSM

is highly parallelizable and, therefore, suitable for computation on multiprocessor or multicluster

computers. This is especially true when the problem requires a large number of harmonic terms
to yield accurate results.

References

[1]

[2]

[3]

[4]

Alliant Computer Systems Corporation, FX/FORTRAN Programmer's Handbook, Alliant Com-

puter Systems Corporation, Acton, Massachusetts, 1987.

A. Assadi-Lamouki and T. Krauthammer, An explicit finite difference approach for the Mindlin

plate analysis, Computers _ Structures, Vol.31, No.4 (1989), pp. 487-494.

K. J. Bathe and E. L. Wilson, Numerical Methods in Finite Element Analysis, Prentice-Hall,
Englewood Cliffs, New Jersey, 1976.

P. R. Benson and E. Hinton, A thick finite strip solution for static, free vibration and stability
problems, Int. J. for Numer. Meth. in Eng., 10 (1976), pp. 665-678.

9O

[5] J.M. Canet, B. Su£rez, and E. Ofiate, Dynamic analysis of structures using a Reissner-Mindlin

finite strip formulation, Computers 8J Structures, Vol.31, No.6 (1989), pp. 967-975.

[6] Y-K. Cheung, The finite strip method in the analysis of elastic plates with two opposite simply

supported ends, Pro(:. Inst. Civ. Eng., 40(1968), pp. 1-7.

[7] Y-K. Cheung, Finite strip method analysis of elastic slabs, ASCE J. of Mechanics Div., 94 (1968),

pp. 1365-1378.

[8] Y-K. Cheung, Finite Strip Method in Structural Analysis, Pergamon Press, New York, 1976.

[9] H-C. Chen and A-F. He, Implementation of the finite strip method for structural analysis on a par-
allel computer, Pro(:. 1990 Int'l. Conf. on Parallel Processing, Vol. III: Algorithms and Applications

(ed. P-C. Yew), August 1990, pp. 372-373.

[10] A.R. Cusens and Y. C. Loo, Applications of the finite strip method in the analysis of concrete box

bridges, Proc. Inst. Cir. Eng., 57-II (1974), pp. 251-273.

[11] E. Davidson, D. Kuck, D. Lawrie, and A. Sameh, Supercomputing tradeoffs and the Cedar sys-

tem, CSRD Tech. Rept. 577, Center for Supercomputing Research and Development, University of

Illinois at Urbana-Champaign, 1986.

[12] J.J. Dongarra, C. B. Moler, J. R. Bunch, and G. W. Stewart, LINPACK User's Guide, SIAM,
1979.

[13] C. Farhat and E. Wilson, A parallel active column equation solver, Computers _ Structures, Vol.28,

No.2 (1988), pp. 289-304.

[14] D.G. Fertis, Dynamics and Vibration of Structures, John Wiley & Sons, New York, 1973.

[15] D. Goehlich, L. Komzsik, R. E. Fulton, Application of a parallel equation solver to static FEM

problems, Computers 8J Structures, Vol.31, No.2 (1989), pp. 121-129.

[16] K.H. Huebner, The Finite Element Method for Engineers, John Wiley & Sons, New York, 1975.

[17] R.D. Mindlin, Influence of rotatory inertia and shear on flexural motions of isotropic, elastic plates,

J. of Applied Mechanics, 18 (1951), pp. 31-38.

[18] E. Ofiate and B. Suarez, A unified approach for the analysis of bridges, plates and axisymmetric
shells using the linear Mindlin strip element, Computers 8_ Structures, 17 (1983), pp. 407-426.

[19] E. Ofiate and B. Suarez, A comparison of the linear quadratic and cubic Mindlin strip elements for

the analysis of thick and thin plates, Computers _ Structures, 17 (1983), pp. 427-439.

[20] J. A. Puckett and R. J. Schmidt, Finite strip method for groundwater modeling in a parallel

computing environment, Eng. Comput., 7 (1990), pp. 167-172.

[21] S.P. Timoshenko and J. M. Gere, Mechanics of Materials, Van Nostrand Co., New York, 1972.

[22] O.C. Zienkiewicz, The Finite Element Method, 3rd ed., McGraw-Hill, London, 1977.

[23] D. Zois, Parallel processing techniques for FE analysis: system solution, Computers _ Structures,

Vol.28, No.2 (1988), pp. 261-274.

91

